论文标题

利用预定的gan生成有限的数据

On Leveraging Pretrained GANs for Generation with Limited Data

论文作者

Zhao, Miaoyun, Cong, Yulai, Carin, Lawrence

论文摘要

最近的工作表明,生成的对抗网络(GAN)可以产生高度逼真的图像,这些图像通常与真实图像无法区分。如此生成的大多数图像都没有包含在培训数据集中,这表明使用GAN生成的数据增加了训练集的潜力。虽然当可用的数据有限时,这种情况特别相关,但仍存在基于有限的数据训练GAN本身的问题。为了促进这一点,我们利用在大规模数据集(如ImageNet)上预处理的现有GAN模型,以遵循转移学习的概念来引入其他知识(在有限的数据中可能不存在)。通过自然图像的产生证明,我们揭示了可以转移有限的培训数据的较低剂的发电机和鉴别剂的低级过滤器(接近观察器)和鉴别剂的歧视器。为了进一步调整传输的过滤器到目标域,我们提出了自适应滤波器调制(ADAFM)。提出了一组广泛的实验,以证明拟议技术对生成有限的数据的有效性。

Recent work has shown generative adversarial networks (GANs) can generate highly realistic images, that are often indistinguishable (by humans) from real images. Most images so generated are not contained in the training dataset, suggesting potential for augmenting training sets with GAN-generated data. While this scenario is of particular relevance when there are limited data available, there is still the issue of training the GAN itself based on that limited data. To facilitate this, we leverage existing GAN models pretrained on large-scale datasets (like ImageNet) to introduce additional knowledge (which may not exist within the limited data), following the concept of transfer learning. Demonstrated by natural-image generation, we reveal that low-level filters (those close to observations) of both the generator and discriminator of pretrained GANs can be transferred to facilitate generation in a perceptually-distinct target domain with limited training data. To further adapt the transferred filters to the target domain, we propose adaptive filter modulation (AdaFM). An extensive set of experiments is presented to demonstrate the effectiveness of the proposed techniques on generation with limited data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源