论文标题
指数总和模型$ p^2 $的分层结果
A stratification result for an exponential sum modulo $p^2$
论文作者
论文摘要
在此注释中,我们考虑代数指数总和,超过同质非单词多项式的值$ f(x_1,\ cdots,x_n)\ in \ Mathbb {Z} [x_1,\ cdots,x_n] in Botient Ring $ \ \ \ Mathbb {z}/p^2 \ x \ x \ x {我们提供了此指数总和的估计值和空间的相应分层$ \ Mathbb {a} _ {\ Mathbb {f} _p}^n $,尤其说明了Fouvry和Katz的一般分层定理。
In this note we consider algebraic exponential sums over the values of homogeneous nonsingular polynomials $F(x_1, \cdots, x_n) \in \mathbb{Z}[x_1, \cdots, x_n]$ in the quotient ring $\mathbb{Z}/p^2\mathbb{Z}$. We provide an estimate of this exponential sum and a corresponding stratification of the space $\mathbb{A}_{\mathbb{F}_p}^n$, which in particular illustrates a general stratification theorem of Fouvry and Katz.