论文标题

$ \ varepsilon $ metric的正则化。 ii。限制$ \ varepsilon = + 0 $

Regularization by $\varepsilon$-metric. II. Limit $\varepsilon = + 0$

论文作者

Ivashchuk, V. D.

论文摘要

在由$ \ varepsilon $ - metric [1]正规的宽类繁殖器中,制定了$ r $ operation。事实证明,重新归一化的Feynman积分的极限存在,并且是协变量的。讨论了重力的可能应用。 (本文是作者在1987 - 88年发表的俄罗斯两篇文章中的第二篇文章的英文翻译:V.D。ivashchuk,$ \ varepsilon $-Metric。II。LIMIT$ \ VAREPSILON = +0 $,IZVESTIYA AKADEMII AKADEMII NAUK MOLDAVSKOY MOTEMESKOIH iikikih iikikih i.limit。 Nauk,第1页,第10-20页(1988年)。

In a wide class of propagators regularized by the $\varepsilon$-metric [1], the $R$-operation is formulated. It is proved that the limit of renormalized Feynman integrals exists and is covariant. Possible applications in gravity are discussed. (The paper is an English translation of the second of two articles in Russian published by the author in 1987-88: V.D. Ivashchuk, Regularization by $\varepsilon$-metric. II. Limit $\varepsilon = +0$, Izvestiya Akademii Nauk Moldavskoy SSR, Ser. fiziko-tekhnicheskih i matematicheskih nauk, No. 1, p. 10-20 (1988) [in Russian] .)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源