论文标题

少素描以获取更多:基于基于草图的图像检索

Sketch Less for More: On-the-Fly Fine-Grained Sketch Based Image Retrieval

论文作者

Bhunia, Ayan Kumar, Yang, Yongxin, Hospedales, Timothy M., Xiang, Tao, Song, Yi-Zhe

论文摘要

基于细粒度的草图图像检索(FG-SBIR)解决了给定用户查询草图检索特定照片实例的问题。然而,由于画素描需要时间,而且大多数人都在努力绘制完整而忠实的草图,这使它的广泛适用性受到了阻碍。在本文中,我们重新制定了常规的FG-SBIR框架来应对这些挑战,最终目标是以最少的笔触来检索目标照片。我们进一步提出了一种直立的设计,该设计一旦用户开始绘画就开始检索。为了实现这一目标,我们设计了一个基于增强学习的跨模式检索框架,该框架在完整的草图绘图剧集上直接优化了地面真相照片的等级。此外,我们介绍了一种新颖的奖励方案,该方案绕过与无关的草图相关的问题,因此在检索过程中为我们提供了更加一致的排名清单。我们在两个公开可用的细粒度素描检索数据集上实现了优于最先进方法和替代基线的卓越早期效率。

Fine-grained sketch-based image retrieval (FG-SBIR) addresses the problem of retrieving a particular photo instance given a user's query sketch. Its widespread applicability is however hindered by the fact that drawing a sketch takes time, and most people struggle to draw a complete and faithful sketch. In this paper, we reformulate the conventional FG-SBIR framework to tackle these challenges, with the ultimate goal of retrieving the target photo with the least number of strokes possible. We further propose an on-the-fly design that starts retrieving as soon as the user starts drawing. To accomplish this, we devise a reinforcement learning-based cross-modal retrieval framework that directly optimizes rank of the ground-truth photo over a complete sketch drawing episode. Additionally, we introduce a novel reward scheme that circumvents the problems related to irrelevant sketch strokes, and thus provides us with a more consistent rank list during the retrieval. We achieve superior early-retrieval efficiency over state-of-the-art methods and alternative baselines on two publicly available fine-grained sketch retrieval datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源