论文标题

战斗幻想游戏系统中的最佳策略:通过有限的资源赌博影响随机动态

Optimal strategies in the Fighting Fantasy gaming system: influencing stochastic dynamics by gambling with limited resource

论文作者

Johnston, Iain G.

论文摘要

《战斗幻想》是全球流行的娱乐幻想游戏系统。该系统中的战斗通过随机游戏涉及一系列回合,每场比赛都可能赢得或丢失。每回合,都可以在赌博上花费有限的资源(“运气”),以从胜利中扩大收益或减轻损失的赤字。但是,这场赌博的成功取决于剩余资源的数量,如果赌博不成功,福利会降低并增加。因此,玩家动态地选择花费资源来尝试影响游戏的随机动态,并降低了积极回报的可能性。胜利最佳策略的识别是马尔可夫决策问题尚未解决。在这里,我们将随机分析和仿真与动态编程结合在一起,以表征在不存在和存在赌博策略的情况下系统的动态行为。我们在没有基于运气的策略的情况下为胜利概率提供了一个简单的表达。我们使用向后的归纳方法来解决系统的Bellman方程,并确定游戏过程中任何给定状态的最佳策略。最佳控制策略可以极大地提高成功概率,但采用详细的表格。我们使用随机仿真将这些最佳策略近似于可以使用的简单启发式方法。我们的发现为改善全世界人士玩耍的游戏的成功提供了路线图,并在随机游戏中的回报率降低时为一类资源分配问题提供了信息。

Fighting Fantasy is a popular recreational fantasy gaming system worldwide. Combat in this system progresses through a stochastic game involving a series of rounds, each of which may be won or lost. Each round, a limited resource (`luck') may be spent on a gamble to amplify the benefit from a win or mitigate the deficit from a loss. However, the success of this gamble depends on the amount of remaining resource, and if the gamble is unsuccessful, benefits are reduced and deficits increased. Players thus dynamically choose to expend resource to attempt to influence the stochastic dynamics of the game, with diminishing probability of positive return. The identification of the optimal strategy for victory is a Markov decision problem that has not yet been solved. Here, we combine stochastic analysis and simulation with dynamic programming to characterise the dynamical behaviour of the system in the absence and presence of gambling policy. We derive a simple expression for the victory probability without luck-based strategy. We use a backward induction approach to solve the Bellman equation for the system and identify the optimal strategy for any given state during the game. The optimal control strategies can dramatically enhance success probabilities, but take detailed forms; we use stochastic simulation to approximate these optimal strategies with simple heuristics that can be practically employed. Our findings provide a roadmap to improving success in the games that millions of people play worldwide, and inform a class of resource allocation problems with diminishing returns in stochastic games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源