论文标题

液压压裂期间微作用事件和故障滑移的弹簧扫描和有限元建模

Spring-Slider and Finite Element Modeling of Microseismic Events and Fault Slip during Hydraulic Fracturing

论文作者

Kashefi, Ali, Dunham, Eric M., Grossman-Ponemon, Benjamin, Lew, Adrian J.

论文摘要

液压压裂通过打开裂缝并触发自然断裂和断层的滑动来增加储层渗透率。虽然可以发现小断层或断层斑块的地震滑动作为微作用事件,但对无性滑移的作用却鲜为人知。从建模的角度来看,使用库仑标准的地质力学分析可以确定断层是否滑动,而不是滑移是地震还是无性抗震动。在这里,我们提出了一种计算方法来预测断层滑移,以及使用速率和状态摩擦的滑移是地震或无自抗的。为了避免与解决小故障有关的计算成本,我们使用将故障视为点的弹簧选的理想化。断层之间的相互作用被忽略。该方法用于研究断层滑移,该断层滑移来自液压裂缝,该液压裂缝在不相交的情况下生长过断层。我们代表了使用拉伸裂纹尖端周围的应力膨胀的液压断裂。我们研究了断层长度,方向和距液压骨折的距离的影响。对于较小的刚度速度的断层,刚度小于临界刚度,滑动是地震的,而刚度的断层大于临界刚度在无动于衷的情况下滑动。此外,我们将弹簧选的理想化与有限元分析进行比较,该分析可以解决空间可变的滑动。弹簧扫描的理想化提供了相当准确的矩甚至矩率历史的预测,尤其是对于刚度接近或大于临界刚度的断层。对于破裂传播很重要的大断层而言,出现差异,尽管对于许多应用,差异仍然可以忽略不计。

Hydraulic fracturing increases reservoir permeability by opening fractures and triggering slip on natural fractures and faults. While seismic slip of small faults or fault patches is detectable as microseismic events, the role of aseismic slip is poorly understood. From a modeling standpoint, geomechanical analysis using the Coulomb criterion can determine if faults slip but not whether slip is seismic or aseismic. Here we propose a computational methodology to predict fault slip, and whether slip is seismic or aseismic, using rate-and-state friction. To avoid computational costs associated with resolving small faults, we use the spring-slider idealization that treats faults as points. Interaction between faults is neglected. The method is applied to study fault slip from a hydraulic fracture that grows past a fault, without intersecting it. We represent the hydraulic fracture stressing using an asymptotic expansion of stresses around the tip of a tensile crack. We investigate the effect of fault length, orientation, and distance from the hydraulic fracture. For velocity-weakening faults with stiffness smaller than a critical stiffness, slip is seismic, whereas faults with stiffness greater than the critical stiffness slip aseismically. Furthermore, we compare the spring-slider idealization with a finite element analysis that resolves spatially variable slip. The spring-slider idealization provides reasonably accurate predictions of moment and even moment-rate history, especially for faults having stiffness close to or larger than the critical stiffness. Differences appear for large faults where rupture propagation is important, though differences might still be negligible for many applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源