论文标题
散射图,滑轮和曲线
Scattering diagrams, sheaves, and curves
论文作者
论文摘要
我们回顾了N.Takahashi在属属上的猜想的最新证明,$ 0 $ gromov-witten不变式$(\ mathbb {p}^2,e)$,其中$ e $是复杂的投射平面$ \ m atmathbb {p}^2 $的平滑立方曲线。主要的想法是将代数概念的使用用作$(\ Mathbb {p}^2,e)$的Gromov-witten不变性世界之间的桥梁与$ \ Mathbb {p}^2 $ $ \ Mathbb {P}^2 $的模仿空间的世界之间的桥梁。使用这座桥,可以将N.Takahash的猜想转化为关于$ \ Mathbb {p}^2 $的相干滑轮的模量空间的可管理问题。 这项调查基于2019年9月9日至12日在北京举行的北京北京 - Zurich Moduli研讨会的一部分的三个小时讲座。
We review the recent proof of the N.Takahashi's conjecture on genus $0$ Gromov-Witten invariants of $(\mathbb{P}^2, E)$, where $E$ is a smooth cubic curve in the complex projective plane $\mathbb{P}^2$. The main idea is the use of the algebraic notion of scattering diagram as a bridge between the world of Gromov-Witten invariants of $(\mathbb{P}^2, E)$ and the world of moduli spaces of coherent sheaves on $\mathbb{P}^2$. Using this bridge, the N.Takahashi's conjecture can be translated into a manageable question about moduli spaces of coherent sheaves on $\mathbb{P}^2$. This survey is based on a three hours lecture series given as part of the Beijing-Zurich moduli workshop in Beijing, 9-12 September 2019.