论文标题

具有移动范围传感器的最佳防护周长和区域

Optimally Guarding Perimeters and Regions with Mobile Range Sensors

论文作者

Feng, Si Wei, Yu, Jingjin

论文摘要

我们研究了使用配备2D范围传感器的移动机器人来最佳防护外周围或区域,即1D或2D组的问题。鉴于这样的任意形状要守护,以及$ k $移动传感器,其中$ i $ th传感器可以使用可变半径$ r_i $的圆形区域,我们寻求最佳策略来部署$ k $传感器以完全覆盖该集合,从而使$ \ \最大的max r_i $最小化。在计算复杂性的一边,我们表明,计算$ 1.152 $最佳的解决方案来保护周长或区域是NP-HARD,即问题很难大致。当每个传感器最多可以在两个不相交的外围段守卫时,硬度会导致外围守护。在计算方法的一边,对于守卫周围,我们为特殊设置开发了完全多项式时间近似方案(FPTA),在该设置中,每个传感器只能守护单个连续的周边段,这表明上述难以在两分段段传感模型上难以实现的结果很难。对于一般问题,我们首先将多项式时间(2+$ε)$ - 近似算法描述为上限,适用于外围守卫和区域保护。接下来是基于高性能整数线性编程(ILP)的方法,该方法计算近乎最佳的解决方案。对潜在应用方案的全面计算基准以及评估证明了这些算法解决方案的有效性。

We investigate the problem of using mobile robots equipped with 2D range sensors to optimally guard perimeters or regions, i.e., 1D or 2D sets. Given such a set of arbitrary shape to be guarded, and $k$ mobile sensors where the $i$-th sensor can guard a circular region with a variable radius $r_i$, we seek the optimal strategy to deploy the $k$ sensors to fully cover the set such that $\max r_i$ is minimized. On the side of computational complexity, we show that computing a $1.152$-optimal solution for guarding a perimeter or a region is NP-hard, i.e., the problem is hard to approximate. The hardness result on perimeter guarding holds when each sensor may guard at most two disjoint perimeter segments. On the side of computational methods, for the guarding perimeters, we develop a fully polynomial time approximation scheme (FPTAS) for the special setting where each sensor may only guard a single continuous perimeter segment, suggesting that the aforementioned hard-to-approximate result on the two-disjoint-segment sensing model is tight. For the general problem, we first describe a polynomial-time (2+$ε)$-approximation algorithm as an upper bound, applicable to both perimeter guarding and region guarding. This is followed by a high-performance integer linear programming (ILP) based method that computes near-optimal solutions. Thorough computational benchmarks as well as evaluation on potential application scenarios demonstrate the effectiveness of these algorithmic solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源