论文标题

比较视觉分析用于评估序列嵌入的医疗记录

Comparative Visual Analytics for Assessing Medical Records with Sequence Embedding

论文作者

Guo, Rongchen, Fujiwara, Takanori, Li, Yiran, Lima, Kelly M., Sen, Soman, Tran, Nam K., Ma, Kwan-Liu

论文摘要

用于数据驱动诊断的机器学习已在医学领域积极研究,以提供更好的医疗保健。支持对患者队列的分析类似于患者,这是临床医生以高信心做出决定的关键任务。但是,由于病历的特征,这种分析并不直接:高维,时间不规则和稀疏性。为了应对这一挑战,我们介绍了一种方法来计算病历。我们的方法采用事件和序列嵌入。当我们将自动编码器用于事件嵌入时,我们将其变体应用于序列嵌入的自发机制。此外,为了更好地处理数据的不规则性,我们通过考虑不同的时间间隔来增强自我注意力的机制。我们已经开发了一个视觉分析系统,以支持患者记录的比较研究。为了比较具有不同长度的序列,我们的系统结合了序列比对方法。通过其交互式界面,用户可以快速识别感兴趣的患者,并方便地查看患者记录的时间和多元方面。我们使用UC Davis新生儿重症监护室的现实数据集进行了案例研究,通过案例研究证明了我们的设计和系统的有效性。

Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforward due to the characteristics of medical records: high dimensionality, irregularity in time, and sparsity. To address this challenge, we introduce a method for similarity calculation of medical records. Our method employs event and sequence embeddings. While we use an autoencoder for the event embedding, we apply its variant with the self-attention mechanism for the sequence embedding. Moreover, in order to better handle the irregularity of data, we enhance the self-attention mechanism with consideration of different time intervals. We have developed a visual analytics system to support comparative studies of patient records. To make a comparison of sequences with different lengths easier, our system incorporates a sequence alignment method. Through its interactive interface, the user can quickly identify patients of interest and conveniently review both the temporal and multivariate aspects of the patient records. We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源