论文标题

用于柏拉图传输系外行星光度法的恒星变异噪声底

The Stellar Variability Noise Floor for Transiting Exoplanet Photometry with PLATO

论文作者

Morris, Brett M., Bobra, Monica G., Agol, Eric, Lee, Yu Jin, Hawley, Suzanne L.

论文摘要

ESA行星运输和振荡的主要科学动机之一(PLATO)任务是测量具有3%精度的外球星交流半径。除了耀斑和星空外,恒星振荡和颗粒状还将强制实施基本的噪声地板,以用于传播系外行星半径测量。我们模拟了SDO上HMI仪器在SDO上拍摄的太阳的地球大型系外行星的光曲线,以研究通过恒星颗粒和振荡在系外行星半径测量上引入的不确定性。在使用高斯工艺对太阳可变性进行建模后,我们发现太阳振荡和颗粒的幅度为100 ppm,与地球交通深度相似,并在任务持续时间内观察到四个过渡时间在0.73%的深度上引入了分数不确定性。但是,当我们将深度测量值转化为行星的半径测量值时,我们发现半径不确定性更大3.6%。这是由于过境半径比,肢体变形和影响参数在存在恒星变异性的情况下限制过境影响参数引起的影响参数之间的变性。我们发现,由于光球颗粒而引起的表面亮度不均匀性仅贡献了2 ppm的下限,从而对光度法进行了传输。在将检测器或观察噪声引入光曲线之前,由于颗粒和振荡引起的半径不确定性,加上与过境影响参数的堕落性相结合,占柏拉图任务误差预算的很大一部分。如果可以限制冲击参数或在较长的肢体销售不太明显的较长波长下获得后续观测值,则可能会实现更高的精度半径测量值。

One of the main science motivations for the ESA PLAnetary Transit and Oscillations (PLATO) mission is to measure exoplanet transit radii with 3% precision. In addition to flares and starspots, stellar oscillations and granulation will enforce fundamental noise floors for transiting exoplanet radius measurements. We simulate light curves of Earth-sized exoplanets transiting continuum intensity images of the Sun taken by the HMI instrument aboard SDO to investigate the uncertainties introduced on the exoplanet radius measurements by stellar granulation and oscillations. After modeling the solar variability with a Gaussian process, we find that the amplitude of solar oscillations and granulation is of order 100 ppm -- similar to the depth of an Earth transit -- and introduces a fractional uncertainty on the depth of transit of 0.73% assuming four transits are observed over the mission duration. However, when we translate the depth measurement into a radius measurement of the planet, we find a much larger radius uncertainty of 3.6%. This is due to a degeneracy between the transit radius ratio, the limb-darkening, and the impact parameter caused by the inability to constrain the transit impact parameter in the presence of stellar variability. We find that surface brightness inhomogeneity due to photospheric granulation contributes a lower limit of only 2 ppm to the photometry in-transit. The radius uncertainty due to granulation and oscillations, combined with the degeneracy with the transit impact parameter, accounts for a significant fraction of the error budget of the PLATO mission, before detector or observational noise is introduced to the light curve. If it is possible to constrain the impact parameter or to obtain follow-up observations at longer wavelengths where limb-darkening is less significant, this may enable higher precision radius measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源