论文标题

在2D平方晶格上的陷阱硬币的完整分类

Complete classification of trapping coins for quantum walks on the 2D square lattice

论文作者

Kollár, Bálint, Gilyén, András, Tkáčová, Iva, Kiss, Tamás, Jex, Igor, Štefaňák, Martin

论文摘要

离散时间量子步行的独特特征之一称为捕获,这意味着量子步行者无法完全摆脱其初始位置,尽管该系统在翻译上是不变的。效果取决于局部硬币的维度和明确形式。正方形晶格上的四个州离散时间量子步行由其统一的硬币操作员定义,该操作员作用于四维硬币希尔伯特(Hilbert Space)。 Grover硬币的众所周知的例子导致部分捕获,即存在一些逃脱的初始状态,而在初始位置的可能性消失了。另一方面,已知其他一些硬币会表现出强烈的捕获,而这种逃避状态不存在。我们对硬币进行了系统的研究,导致捕获,明确构造所有这些硬币,以在2D平方晶格上进行离散的时间量子步行,并根据操作员的结构和捕获效果的表现对它们进行分类。我们区分了表现出不同动力学特性的三种类型的捕获硬币,例如逃脱状态的存在或不存在的诱因和扩散波包覆盖的区域的存在。

One of the unique features of discrete-time quantum walks is called trapping, meaning the inability of the quantum walker to completely escape from its initial position, albeit the system is translationally invariant. The effect is dependent on the dimension and the explicit form of the local coin. A four state discrete-time quantum walk on a square lattice is defined by its unitary coin operator, acting on the four dimensional coin Hilbert space. The well known example of the Grover coin leads to a partial trapping, i.e., there exists some escaping initial state for which the probability of staying at the initial position vanishes. On the other hand, some other coins are known to exhibit strong trapping, where such escaping state does not exist. We present a systematic study of coins leading to trapping, explicitly construct all such coins for discrete-time quantum walks on the 2D square lattice, and classify them according to the structure of the operator and the manifestation of the trapping effect. We distinguish three types of trapping coins exhibiting distinct dynamical properties, as exemplified by the existence or non-existence of the escaping state and the area covered by the spreading wave-packet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源