论文标题

矢量高斯连续的完善,并降低侧面信息

Vector Gaussian Successive Refinement With Degraded Side Information

论文作者

Xu, Yinfei, Guang, Xuan, Lu, Jian, Chen, Jun

论文摘要

我们研究了Wyner-ZIV编码的连续完善的问题,并通过降级侧面信息进行了完整的表征,并获得了二次矢量高斯病例的速率区域的完整表征。可实现的部分是基于对涉及高斯辅助随机矢量的蒂安 - 迪加维内部结合的评估。对于相反的部分,借助新的极端不平等,获得了匹配的外界。在此,这种极端不平等的证明取决于单调路径论点和加倍技巧以及信息估计关系的整合。

We investigate the problem of the successive refinement for Wyner-Ziv coding with degraded side information and obtain a complete characterization of the rate region for the quadratic vector Gaussian case. The achievability part is based on the evaluation of the Tian-Diggavi inner bound that involves Gaussian auxiliary random vectors. For the converse part, a matching outer bound is obtained with the aid of a new extremal inequality. Herein, the proof of this extremal inequality depends on the integration of the monotone path argument and the doubling trick as well as information-estimation relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源