论文标题

XCAT解剖模型上的4D语义心脏磁共振图像合成

4D Semantic Cardiac Magnetic Resonance Image Synthesis on XCAT Anatomical Model

论文作者

Abbasi-Sureshjani, Samaneh, Amirrajab, Sina, Lorenz, Cristian, Weese, Juergen, Pluim, Josien, Breeuwer, Marcel

论文摘要

我们提出了一种杂种可控的图像生成方法,以合成解剖学上有意义的3D+T标记心脏磁共振(CMR)图像。我们的混合方法将机械4D扩展心脏躯干(XCAT)心脏模型作为解剖基础真理,并通过数据驱动的生成对抗网络(GAN)合成CMR图像。我们采用有条件图像合成的最新的空间自适应脱位(Spade)技术来保留地面真理解剖学的语义空间信息。使用XCAT心脏的参数化运动模型,我们在18个位置为短轴视图生成一个心脏周期的25个时间帧的标签。随后,从这些标签中生成逼真的图像,具有从真实的CMR图像数据中学到的模式特异性特征。我们证明,可以使用样式编码网络来实现来自另一个心脏图像的样式转移。由于XCAT在创建新的心脏模型方面的灵活性,这种方法可能会导致现实的虚拟人群来应对医学图像分析研究社区所面临的不同挑战,例如昂贵的数据收集。我们提出的方法具有巨大的潜力,可以将4D可控的CMR图像与注释和适应性样式合成,可用于医学图像分析中的各种监督多站点的多站点多供应商应用。

We propose a hybrid controllable image generation method to synthesize anatomically meaningful 3D+t labeled Cardiac Magnetic Resonance (CMR) images. Our hybrid method takes the mechanistic 4D eXtended CArdiac Torso (XCAT) heart model as the anatomical ground truth and synthesizes CMR images via a data-driven Generative Adversarial Network (GAN). We employ the state-of-the-art SPatially Adaptive De-normalization (SPADE) technique for conditional image synthesis to preserve the semantic spatial information of ground truth anatomy. Using the parameterized motion model of the XCAT heart, we generate labels for 25 time frames of the heart for one cardiac cycle at 18 locations for the short axis view. Subsequently, realistic images are generated from these labels, with modality-specific features that are learned from real CMR image data. We demonstrate that style transfer from another cardiac image can be accomplished by using a style encoder network. Due to the flexibility of XCAT in creating new heart models, this approach can result in a realistic virtual population to address different challenges the medical image analysis research community is facing such as expensive data collection. Our proposed method has a great potential to synthesize 4D controllable CMR images with annotations and adaptable styles to be used in various supervised multi-site, multi-vendor applications in medical image analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源