论文标题
可伸缩光子激光束转向的蛇形光学阶段阵列
Serpentine optical phased arrays for scalable integrated photonic LIDAR beam steering
论文作者
论文摘要
在集成光子电路中实现的光学分阶段阵列(OPA)可以使各种3D传感,成像,照明和范围应用以及它们在新的激光雷达技术中的收敛性。但是,当前的集成OPA方法并未在控制培养基到远距离激光雷达所需的较大光圈大小上进行控制复杂性,功耗和光学效率。我们介绍了蛇形光学分阶段(SOPA),这是一个新的OPA概念,可以解决这些基本挑战,并使体系结构可以扩展到大孔径。 SOPA基于低损失光栅波导的串行互连阵列,并支持完全被动的二维(2D)波长控制的光束转向。从根本上讲,将进料网络折叠到光圈中的空间效率设计还可以使SOPAS可扩展成具有高填充因子的大型孔径。我们在实验中使用1450-1650 nm波长扫描在实验中证明了第一个SOPA,在27x610阵列中产生16,500个可寻址点。我们还首次证明了光束从单个硅光子芯片上的两个单独的OPA的远场干扰,这是基于新型活动孔径合成方案的远程计算成像激光雷达的第一步。
Optical phased arrays (OPAs) implemented in integrated photonic circuits could enable a variety of 3D sensing, imaging, illumination, and ranging applications, and their convergence in new LIDAR technology. However, current integrated OPA approaches do not scale - in control complexity, power consumption, and optical efficiency - to the large aperture sizes needed to support medium to long range LIDAR. We present the serpentine optical phased array (SOPA), a new OPA concept that addresses these fundamental challenges and enables architectures that scale up to large apertures. The SOPA is based on a serially interconnected array of low-loss grating waveguides and supports fully passive, two-dimensional (2D) wavelength-controlled beam steering. A fundamentally space-efficient design that folds the feed network into the aperture also enables scalable tiling of SOPAs into large apertures with a high fill-factor. We experimentally demonstrate the first SOPA, using a 1450 - 1650 nm wavelength sweep to produce 16,500 addressable spots in a 27x610 array. We also demonstrate, for the first time, far-field interference of beams from two separate OPAs on a single silicon photonic chip, as an initial step towards long-range computational imaging LIDAR based on novel active aperture synthesis schemes.