论文标题
学习为输入句子生成多种样式传输输出
Learning to Generate Multiple Style Transfer Outputs for an Input Sentence
论文作者
论文摘要
文本样式转移是指以不同的样式重新绘制给定文本的任务。尽管已经提出了各种方法来推进艺术的状态,但他们通常假设传输输出遵循三角洲分布,因此他们的模型无法为给定输入文本生成不同的样式传输结果。为了解决限制,我们提出了一个一对多的文本样式转移框架。与以前的作品相反,将输入句子转换为一个输出句子的一对一映射,我们的方法学习了一个一对多的映射,可以将输入句子转换为多个不同的输出句子,同时保留输入内容。这是通过使用潜在分解方案应用对抗训练来实现的。具体而言,我们将输入句子的潜在表示为捕获语言样式变化的样式代码和编码语言样式独立于独立的内容的内容代码。然后,我们将内容代码与用于生成样式传输输出的样式代码相结合。通过将相同的内容代码与不同样式代码相结合,我们生成了不同的样式传输输出。与多种绩效指标相比,与多种公共数据集上的几种文本样式转移方法进行比较的广泛实验结果验证了拟议方法的有效性。
Text style transfer refers to the task of rephrasing a given text in a different style. While various methods have been proposed to advance the state of the art, they often assume the transfer output follows a delta distribution, and thus their models cannot generate different style transfer results for a given input text. To address the limitation, we propose a one-to-many text style transfer framework. In contrast to prior works that learn a one-to-one mapping that converts an input sentence to one output sentence, our approach learns a one-to-many mapping that can convert an input sentence to multiple different output sentences, while preserving the input content. This is achieved by applying adversarial training with a latent decomposition scheme. Specifically, we decompose the latent representation of the input sentence to a style code that captures the language style variation and a content code that encodes the language style-independent content. We then combine the content code with the style code for generating a style transfer output. By combining the same content code with a different style code, we generate a different style transfer output. Extensive experimental results with comparisons to several text style transfer approaches on multiple public datasets using a diverse set of performance metrics validate effectiveness of the proposed approach.