论文标题
滑翔机自动机上所有及物的沙发偏移
Glider automata on all transitive sofic shifts
论文作者
论文摘要
对于任何无限的透射shift $ x $,我们构建了可逆的蜂窝自动机(即Shift $ x $的自动形态),它将子移动的任何给定有限点破坏到一个有限的闪光器集合中,传播到相反的方向。此外,这表明,每个无限的透射式沙发移动都具有可逆的Ca,对所有方向都敏感。作为另一个应用程序,我们证明了瑞安定理:自动形态组aut $(x)$包含一个两元素子集,其centralizer仅包含换档图。我们还表明,在$ s $ gap的班级中,这些结果并没有超出Sofic案例。
For any infinite transitive sofic shift $X$ we construct a reversible cellular automaton (i.e. an automorphism of the shift $X$) which breaks any given finite point of the subshift into a finite collection of gliders traveling into opposing directions. This shows in addition that every infinite transitive sofic shift has a reversible CA which is sensitive with respect to all directions. As another application we prove a finitary Ryan's theorem: the automorphism group aut$(X)$ contains a two-element subset whose centralizer consists only of shift maps. We also show that in the class of $S$-gap shifts these results do not extend beyond the sofic case.