论文标题

逻辑门设计的非常规生物启发的模型

Unconventional Bio-Inspired Model for Design of Logic Gates

论文作者

Floros, Theofanis, Tsakalos, Karolos-Alexandros, Dourvas, Nikolaos, Tsompanas, Michail-Antisthenis, Sirakoulis, Georgios Ch.

论文摘要

在过去的几年中,经过良好研究的生物底物,即Physarum多脑,已被证明有效地在难以解决复杂的数学问题的难度中找到适当有效的解决方案。多头假单胞菌的疟原虫是一个单细胞,是繁荣的生物计算例子。因此,过去已成功使用它来解决图形和组合问题中的各种路径问题。在这项工作中,这种有趣的行为是由强大的非常规计算模型模仿的,从细胞和学习自动机的概念中汲取灵感。也就是说,我们采用具有学习能力的蜂窝自动机原理(CAS)来开发可靠的计算模型,能够对上述生物底物进行适当的建模,从而捕获其计算能力。 CAS在对生物系统进行建模和解决科学问题的建模方面非常有效,因为它们具有在本地交互的简单组件的效果,使全球行为的化身具有化身的基本特性。将CAS与学习能力相结合后,由此产生的计算工具应适用于对生物体的行为进行建模。因此,所提出的生物启发模型的固有能力和计算特性强调了Physarum对逻辑门建模能力的实验验证,同时试图在适当配置的具有食物来源的迷宫中找到最小的路径。在定性和定量上,与相应的实验结果相当一致地发现了有关各种逻辑门的仿真结果,证明了这种非常规生物启发的模型的疗效,并为其在各种计算应用中增强使用提供了有用的见解。

During the last years, a well studied biological substrate, namely Physarum polycephalum, has been proven efficient on finding appropriate and efficient solutions in hard to solve complex mathematical problems. The plasmodium of P. polycephalum is a single-cell that serves as a prosperous bio-computational example. Consequently, it has been successfully utilized in the past to solve a variety of path problems in graphs and combinatorial problems. In this work, this interesting behaviour is mimicked by a robust unconventional computational model, drawing inspiration from the notion of Cellular and Learning Automata. Namely, we employ principles of Cellular Automata (CAs) enriched with learning capabilities to develop a robust computational model, able of modelling appropriately the aforementioned biological substrate and, thus, capturing its computational capabilities. CAs are very efficient in modelling biological systems and solving scientific problems, owing to their ability of incarnating essential properties of a system where global behaviour arises as an effect of simple components, interacting locally. The resulting computational tool, after combining CAs with learning capabilities, should be appropriate for modelling the behaviour of living organisms. Thus, the inherent abilities and computational characteristics of the proposed bio-inspired model are stressed towards the experimental verification of Physarum's ability to model Logic Gates, while trying to find minimal paths in properly configured mazes with food sources. The presented simulation results for various Logic Gates are found in good agreement, both qualitatively and quantitatively, with the corresponding experimental results, proving the efficacy of this unconventional bio-inspired model and providing useful insights for its enhanced usage in various computing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源