论文标题
将机器学习与基于知识的建模相结合,以进行可扩展的预测和子网格尺度闭合大型,复杂的时空系统
Combining Machine Learning with Knowledge-Based Modeling for Scalable Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal Systems
论文作者
论文摘要
当我们可以访问以前系统状态的时间序列数据和完整系统动力学的不完善模型时,我们考虑了通常遇到的情况(例如,在天气预报中),目的是预测大型时空混乱的动力学系统的时间演变。具体来说,我们试图利用机器学习作为将过去数据使用整合到预测中的必要工具。为了促进对时空混乱系统非常大且复杂的共同方案的可伸缩性,我们建议将两种方法结合在一起:(i)平行机器学习预测方案; (ii)一种混合技术,用于由基于知识的组件和基于机器学习的组件组成的复合预测系统。我们证明,这种方法不仅可以将(i)和(ii)缩放以给非常大的系统提供出色的性能,而且还可以使训练我们多个平行的机器学习组件所需的时间序列数据大大低于所需的时间序列,而没有并行化。此外,考虑到基于知识的组件的计算实现无法解析亚网格规模过程的情况,我们的方案能够使用训练数据来结合未解决的短规模动力学对已解决的较长尺度动力学的影响(“子网格尺度闭合”)。
We consider the commonly encountered situation (e.g., in weather forecasting) where the goal is to predict the time evolution of a large, spatiotemporally chaotic dynamical system when we have access to both time series data of previous system states and an imperfect model of the full system dynamics. Specifically, we attempt to utilize machine learning as the essential tool for integrating the use of past data into predictions. In order to facilitate scalability to the common scenario of interest where the spatiotemporally chaotic system is very large and complex, we propose combining two approaches:(i) a parallel machine learning prediction scheme; and (ii) a hybrid technique, for a composite prediction system composed of a knowledge-based component and a machine-learning-based component. We demonstrate that not only can this method combining (i) and (ii) be scaled to give excellent performance for very large systems, but also that the length of time series data needed to train our multiple, parallel machine learning components is dramatically less than that necessary without parallelization. Furthermore, considering cases where computational realization of the knowledge-based component does not resolve subgrid-scale processes, our scheme is able to use training data to incorporate the effect of the unresolved short-scale dynamics upon the resolved longer-scale dynamics ("subgrid-scale closure").