论文标题
光子向导 - 朝向教育机器学习代码生成器
The PHOTON Wizard -- Towards Educational Machine Learning Code Generators
论文作者
论文摘要
尽管为使机器学习民主化,尤其是在应用科学方面做出了巨大的努力,但缺乏编码技能仍然会阻碍该应用程序。当我们考虑建立有效有效的机器学习解决方案的程序理解的关键时,我们主张一种新型的教育方法,该方法基于可访问性和接受图形用户界面,以将编程技能传达给应用科学目标群体。我们概述了概念验证,开源Web应用程序Photon向导,该应用程序将GUI交互转换为Python机器学习框架Photon的有效源代码。因此,拥有理论机器学习知识的用户获得了对模型开发工作流程以及对自定义实现的直观理解的关键见解。具体而言,光子向导整合了教育机器学习代码生成器的概念,以教用户如何编写用于设计,培训,优化和评估自定义机器学习管道的代码。
Despite the tremendous efforts to democratize machine learning, especially in applied-science, the application is still often hampered by the lack of coding skills. As we consider programmatic understanding key to building effective and efficient machine learning solutions, we argue for a novel educational approach that builds upon the accessibility and acceptance of graphical user interfaces to convey programming skills to an applied-science target group. We outline a proof-of-concept, open-source web application, the PHOTON Wizard, which dynamically translates GUI interactions into valid source code for the Python machine learning framework PHOTON. Thereby, users possessing theoretical machine learning knowledge gain key insights into the model development workflow as well as an intuitive understanding of custom implementations. Specifically, the PHOTON Wizard integrates the concept of Educational Machine Learning Code Generators to teach users how to write code for designing, training, optimizing and evaluating custom machine learning pipelines.