论文标题
在单连接路径图中部分协方差的分解
Factorization of the Partial Covariance in Singly-Connected Path Diagrams
论文作者
论文摘要
我们通过表明,对于单一连接的路径图,我们扩展了路径分析,两个随机变量的部分协方差将在变量之间的路径中的节点和边缘上分配。该结果使我们能够确定每个节点和边缘对部分协方差的贡献。它还使我们能够证明辛普森的悖论不能在单连接的路径图中发生。
We extend path analysis by showing that, for a singly-connected path diagram, the partial covariance of two random variables factorizes over the nodes and edges in the path between the variables. This result allows us to determine the contribution of each node and edge to the partial covariance. It also allows us to show that Simpson's paradox cannot occur in singly-connected path diagrams.