论文标题
三维概括性单极序列的局部行为
Local behaviour of sequences of three-dimensional generalised monopoles
论文作者
论文摘要
本文的目的是研究与某个L2-norm结合均匀的广义单孔序列的行为。我们专注于目标超卡勒歧管是斯旺束。在三维情况下,假设存在一个开放的子手机y',以便沿y''''''hyperkahler电位在y上具有均匀的下限。然后,我们表明,在Y'的任何紧凑子集上存在广义单翼的收敛子序列。在类似的假设下,在第四维度中,对广义的谐波旋转器的结论相同。
The purpose of this paper is to study the behaviour of sequences of generalised monopoles with a uniform bound on a certain L2-norm. We focus on the case that the target hyperKahler manifolds are Swann bundles. In 3-dimensional case, suppose that there exists an open submanifold Y' such that the hyperKahler potential along the monopoles has a uniform lower bound over Y'. Then we show that there exist convergent subsequences of generalised monopoles over any compact subset of Y'. Under similar assumptions, the same conclusion holds for the generalised harmonic spinors in dimension four.