论文标题
logsmooth梯度集中和更紧密的大都会蒙特卡洛
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
论文作者
论文摘要
我们表明,梯度规范$ \ | \ nabla f(x)\ | $ for $ x \ sim \ exp(-f(x)$),其中$ f $强烈凸出且平滑,在其平均值上紧紧浓缩。这消除了先前的最新分析分析中的障碍,用于研究良好的大都市蒙特卡洛(HMC)算法,用于从强烈的logconcave分布中进行采样。我们相应地证明了大都市在$ \ tilde {o}(κD)$迭代中的混合,在$ \ tilde {o}(κ^{1.5} \ sqrt {d} +κD +κD)$(dwivedi等。 $(κ/d)^{1/2} $当条件编号$κ$很大时。我们的混合时间分析介绍了几种技术,据我们所知,文献中尚未出现,并且可能具有独立的兴趣,包括限制具有良好电导行为的非凸的限制,以及一种新的还原技术,用于促进弱环境保证在弱保暖性假设下的恒定准确性总变化保证。这是仅使用一阶功能信息来实现对$κ$的线性依赖性的一阶功能信息的第一个高准确性混合时间结果;我们还提供证据表明,对于标准大都市的一阶方法,这种依赖性可能是必需的。
We show that the gradient norm $\|\nabla f(x)\|$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(κd)$ iterations, improving upon the $\tilde{O}(κ^{1.5}\sqrt{d} + κd)$ runtime of (Dwivedi et. al. '18, Chen et. al. '19) by a factor $(κ/d)^{1/2}$ when the condition number $κ$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $κ$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.