论文标题

复杂双曲线晶格的最大可测量共生的超级汇率

Superrigidity of maximal measurable cocycles of complex hyperbolic lattices

论文作者

Sarti, Filippo, Savini, Alessio

论文摘要

令$γ$为$ \ text {pu}(p,1)$的无扭转晶格,带$ p \ geq 2 $,让$(x,μ_x)$为ergodic标准borel borel概率$γ$ - 空间。我们证明,任何最大的Zariski致密共生$σ:γ\ times x \ longrightArrow \ text {su}(m,n)$都是与$ \ text {pu}(p,p,1)$ to $ \ tox $ \ text $ \ text cocyclapations cocycle cosomology copology cocymology cocymology证明遵循Zimmer's Superrigity定理的线,需要一个边界图的存在,我们在更一般的环境中证明了边界图。由于我们的结果,当$ n \ neq m $ $时,它不能与上述属性具有最大可测量的共同体。

Let $Γ$ be a torsion-free lattice of $\text{PU}(p,1)$ with $p \geq 2$ and let $(X,μ_X)$ be an ergodic standard Borel probability $Γ$-space. We prove that any maximal Zariski dense measurable cocycle $σ: Γ\times X \longrightarrow \text{SU}(m,n)$ is cohomologous to a cocycle associated to a representation of $\text{PU}(p,1)$ into $\text{SU}(m,n)$, with $1 < m \leq n$. The proof follows the line of Zimmer' Superrigidity Theorem and requires the existence of a boundary map, that we prove in a much more general setting. As a consequence of our result, it cannot exist a maximal measurable cocycle with the above properties when $n\neq m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源