论文标题
非标准量子复合物投影线
Nonstandard Quantum Complex Projective Line
论文作者
论文摘要
为了探索探索量子非标准复杂的投影空间$ \ mathbb {c} p_ {q,c}^{n} $由korogodsky,vaksman,dijkhuizen和noumi研究与bohr-sommeren Quhr-sommerecic and bonechi and bonechi and bonthie and bonechi and bonthe and bunechi and bonthe and bonthe and buneechi and cot and bunechi and bonthe and bunechi and bunechi and bunechi,塔利尼(Tarlini),我们被带到$ c \ big(\ mathbb {c} p_ {q,c} p_ {q,c}^{1} {1} \ big)$,并用两个副本的两个副本的背包沿着符号的分析提供了一些有趣的详细信息,并提供了一些有趣的详细信息,并提供一些有趣的细节,以及一些有趣的详细信息,以及一些有趣的详细信息,以及一些有趣的详细信息,以及一些有趣的详细信息,以及某些有趣的详细信息 - $ c \ big(\ mathbb {c} p_ {q,c}^{1} \ big)$是一个具体的加权双移位。
In our attempt to explore how the quantum nonstandard complex projective spaces $\mathbb{C}P_{q,c}^{n}$ studied by Korogodsky, Vaksman, Dijkhuizen, and Noumi are related to those arising from the geometrically constructed Bohr-Sommerfeld groupoids by Bonechi, Ciccoli, Qiu, Staffolani, and Tarlini, we were led to establish the known identification of $C\big(\mathbb{C}P_{q,c}^{1}\big) $ with the pull-back of two copies of the Toeplitz $C^*$-algebra along the symbol map in a more direct way via an operator theoretic analysis, which also provides some interesting non-obvious details, such as a prominent generator of $C\big(\mathbb{C}P_{q,c}^{1}\big) $ being a concrete weighted double shift.