论文标题

带有EdgedRNN加速器的混合动态转化假体的复发性神经网络控制

Recurrent Neural Network Control of a Hybrid Dynamic Transfemoral Prosthesis with EdgeDRNN Accelerator

论文作者

Gao, Chang, Gehlhar, Rachel, Ames, Aaron D., Liu, Shih-Chii, Delbruck, Tobi

论文摘要

低腿假肢可以通过增加舒适度并减少机车的能量来改善截肢者的生活质量,但是目前控制方法受到人类经验调节行为的限制。本文介绍了为动态机器人辅助设备学习复杂控制器的第一步。我们提供了行为克隆的第一个示例,以使用封闭式复发单元(GRU)的复发神经网络(RNN)在自定义硬件加速器上运行的基于封闭的复发单元(GRU)的复发单元(RNN)来控制动力的转换假肢。对从原始假体控制器收集的数据进行了培训。 RNN推断是由新型的EdgedRNN实时实现的。实验结果表明,RNN可以替换名称PD控制器,以实现对Ampro3假肢在平坦地面上行走的端到端控制,并具有可比的跟踪精度。 Edgedrnn计算RNN的速度比实时快的速度快240倍,从而为将来运行较大的网络开放了可能更复杂的任务。在这种实时动力系统上实施RNN,带有影响,将地面工作纳入了人类普遍系统的其他学习元素中。

Lower leg prostheses could improve the life quality of amputees by increasing comfort and reducing energy to locomote, but currently control methods are limited in modulating behaviors based upon the human's experience. This paper describes the first steps toward learning complex controllers for dynamical robotic assistive devices. We provide the first example of behavioral cloning to control a powered transfemoral prostheses using a Gated Recurrent Unit (GRU) based recurrent neural network (RNN) running on a custom hardware accelerator that exploits temporal sparsity. The RNN is trained on data collected from the original prosthesis controller. The RNN inference is realized by a novel EdgeDRNN accelerator in real-time. Experimental results show that the RNN can replace the nominal PD controller to realize end-to-end control of the AMPRO3 prosthetic leg walking on flat ground and unforeseen slopes with comparable tracking accuracy. EdgeDRNN computes the RNN about 240 times faster than real time, opening the possibility of running larger networks for more complex tasks in the future. Implementing an RNN on this real-time dynamical system with impacts sets the ground work to incorporate other learned elements of the human-prosthesis system into prosthesis control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源