论文标题

一种深度学习方法,用于计算级别方法的曲率

A deep learning approach for the computation of curvature in the level-set method

论文作者

Larios-Cárdenas, Luis Ángel, Gibou, Frederic

论文摘要

我们提出了一种深度学习策略,以估计级别方法中二维隐式接口的平均曲率。我们的方法基于拟合馈送的神经网络与由沉浸在各种分辨率均匀网格中的圆形界面构建的合成数据集。这些多层感知器处理了从网格点旁边的网格点处理级别集值,并在接口上最接近的位置输出无量纲曲率。在统一和自适应网格中,涉及不规则界面的精确分析表明,我们的模型与$ l^1 $和$ l^2 $规范中的传统数值方案具有竞争力。特别是,我们的神经网络在粗分辨率中,界面具有陡峭的曲率区域以及重新初始化水平集函数的迭代次数时,具有可比精度的曲率近似于曲率。尽管传统的数值方法比我们的框架更强大,但我们的结果揭示了机器学习的潜力,以处理已知级别方法遇到困难的计算任务。我们还确定,与通用神经网络相比,可以设计出依赖于应用程序的局部分辨率的应用局部分辨率图,以更有效地估计平均曲率。

We propose a deep learning strategy to estimate the mean curvature of two-dimensional implicit interfaces in the level-set method. Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular interfaces immersed in uniform grids of various resolutions. These multilayer perceptrons process the level-set values from mesh points next to the free boundary and output the dimensionless curvature at their closest locations on the interface. Accuracy analyses involving irregular interfaces, in both uniform and adaptive grids, show that our models are competitive with traditional numerical schemes in the $L^1$ and $L^2$ norms. In particular, our neural networks approximate curvature with comparable precision in coarse resolutions, when the interface features steep curvature regions, and when the number of iterations to reinitialize the level-set function is small. Although the conventional numerical approach is more robust than our framework, our results have unveiled the potential of machine learning for dealing with computational tasks where the level-set method is known to experience difficulties. We also establish that an application-dependent map of local resolutions to neural models can be devised to estimate mean curvature more effectively than a universal neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源