论文标题

评估基于超细胞的分子晶体计算中计算快捷方式:萘的指导性案例

Evaluating Computational Shortcuts in Supercell-Based Phonon Calculations of Molecular Crystals: The Instructive Case of Naphthalene

论文作者

Kamencek, Tomas, Wieser, Sandro, Kojima, Hirotaka, Bedoya-Martínez, Natalia, Dürholt, Johannes P., Schmid, Rochus, Zojer, Egbert

论文摘要

声子至关重要地影响有机半导体材料的多种特性。例如,电荷和热传输取决于低频声子,而对于其他特性,例如自由能,尤其是高频声子计数。对于所有这些数量,人们需要了解整个声子结构,当使用分散校正的密度功能理论(DFT)之类的方法时,其模拟对于更复杂的系统而变得非常昂贵。因此,在目前的贡献中,我们评估了更多近似方法的性能,包括密度功能紧密结合(DFTB)和一组力场(FF)的复杂性和复杂性。除了比较声子条带结构外,我们还批判性地评估了在何种程度上得出的数量,例如温度依赖的热容量,平均平方的热位移和温度依赖性的自由能在描述声子带的描述中受到缺点的影响。作为基准系统,我们选择(剥离)萘,作为唯一可以在文献中可以使用实验性声子条带结构的有机半导体材料。总体而言,对于系统特异性参数化的第二代力场,观察到近似方法中的最佳性能。有趣的是,在低频方案中,还强迫具有相当简单的粘结相互作用(如一般琥珀色场)的模型相当良好的模型。就测试的DFTB参数化而言,我们得到了对单位细胞体积的显着低估,从而导致低频区域中声子能量的明显高估。这不能通过依靠DFT计算的校准电池来解决,因为在该晶胞中,DFTB声子频率显着低估了实验。

Phonons crucially impact a variety of properties of organic semiconductor materials. For instance, charge- and heat transport depend on low-frequency phonons, while for other properties, such as the free energy, especially high-frequency phonons count. For all these quantities one needs to know the entire phonon band structure, whose simulation becomes exceedingly expensive for more complex systems when using methods like dispersion-corrected density functional theory (DFT). Therefore, in the present contribution we evaluate the performance of more approximate methodologies, including density functional tight binding (DFTB) and a pool of force fields (FF) of varying complexity and sophistication. Beyond merely comparing phonon band structures, we also critically evaluate to what extent derived quantities, like temperature-dependent heat capacities, mean squared thermal displacements and temperature-dependent free energies are impacted by shortcomings in the description of the phonon bands. As a benchmark system, we choose (deuterated) naphthalene, as the only organic semiconductor material for which to date experimental phonon band structures are available in the literature. Overall, the best performance amongst the approximate methodologies is observed for a system-specifically parametrized second-generation force field. Interestingly, in the low-frequency regime also force fields with a rather simplistic model for the bonding interactions (like the General Amber Force Field) perform rather well. As far as the tested DFTB parametrization is concerned, we obtain a significant underestimation of the unit cell volume resulting in a pronounced overestimation of the phonon energies in the low frequency region. This cannot be mended by relying on the DFT-calculated unit cell, since with this unit cell the DFTB phonon frequencies significantly underestimate the experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源