论文标题
MOND中指数磁盘的形成
The formation of exponential disk galaxies in MOND
论文作者
论文摘要
星系的形成和演化高度取决于恒星和气体的动力学,该动力受重力定律的控制。为了研究星系的形成和演化是如何在Milgromian重力(MOND)中进行的,我们使用Ramses(POR)代码的幻影呈现完整的流体动力学模拟。这些是在MOND中进行的第一个带有详细流体动力学的星系模拟,包括恒星形成,恒星反馈,辐射转移和超新星。这些模型从简化的初始条件开始,以早期宇宙中孤立的,旋转的气体球的形式开始。这些崩溃并形成了遵守多个扩展关系的晚期星系,这不是先验的预期。形成的星系具有紧凑的凸起和一个磁盘,其表面质量密度谱和尺度长度与观察到的星系一致,并且垂直恒星质量分布具有不同的指数曲线(薄且较厚的磁盘)。因此,这项工作首次表明,气体和恒星中具有指数曲线的磁盘星系是MOND崩溃的气体云的一般结果。这些模型由于其有些紧凑的恒星凸起而略有缺乏恒星角动量,该膨胀与简单的初始条件和后来的气体积聚相关。我们还分析了更复杂的男性物理学的添加如何改变模型的主要属性,并在Milgromian框架中发现这是可以忽略的。
The formation and evolution of galaxies is highly dependent on the dynamics of stars and gas, which is governed by the underlying law of gravity. To investigate how the formation and evolution of galaxies takes place in Milgromian gravity (MOND), we present full hydrodynamical simulations with the Phantom of Ramses (POR) code. These are the first-ever galaxy formation simulations done in MOND with detailed hydrodynamics, including star formation, stellar feedback, radiative transfer and supernovae. These models start from simplified initial conditions, in the form of isolated, rotating gas spheres in the early Universe. These collapse and form late-type galaxies obeying several scaling relations, which was not a priori expected. The formed galaxies have a compact bulge and a disk with exponentially decreasing surface mass density profiles and scale lengths consistent with observed galaxies, and vertical stellar mass distributions with distinct exponential profiles (thin and thick disk). This work thus shows for the first time that disk galaxies with exponential profiles in both gas and stars are a generic outcome of collapsing gas clouds in MOND. These models have a slight lack of stellar angular momentum because of their somewhat compact stellar bulge, which is connected to the simple initial conditions and the negligible later gas accretion. We also analyse how the addition of more complex baryonic physics changes the main resulting properties of the models and find this to be negligibly so in the Milgromian framework.