论文标题

$ k_4^ - $ - 覆盖物和$ k_5^ - $ - 覆盖的确切最小代码阈值

Exact minimum codegree thresholds for $K_4^-$-covering and $K_5^-$-covering

论文作者

Yu, Lei, Hou, Xinmin, Liu, Boyuan, Ma, Yue

论文摘要

鉴于两个$ 3 $ -Graphs $ f $和$ h $,$ f $ $ h $的$ h $是$ h $中的$ f $的副本集合,因此每个顶点$ h $至少包含在其中的至少一个副本中。令{$ c_2(n,f)$}为最大整数$ t $,以便每3块最小代码大于$ t $的3颗粒具有$ f $覆盖。在此注释中,我们通过确定{$ c_2(n,k_4^ - )$}的确切值和{$ c_2(n,k_5^ - )$}的确切值来回答一个空旷的问题(siam J. iNvete Math。,2016),其中$ k_t^ - $是$ 3 $ -Graph,与$ 3 $ -Graph一起使用$ 3 $ -Graph。

Given two $3$-graphs $F$ and $H$, an $F$-covering of $H$ is a collection of copies of $F$ in $H$ such that each vertex of $H$ is contained in at least one copy of them. Let {$c_2(n,F)$} be the maximum integer $t$ such that every 3-graph with minimum codegree greater than $t$ has an $F$-covering. In this note, we answer an open problem of Falgas-Ravry and Zhao (SIAM J. Discrete Math., 2016) by determining the exact value of {$c_2(n, K_4^-)$} and {$c_2(n, K_5^-)$}, where $K_t^-$ is the complete $3$-graph on $t$ vertices with one edge removed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源