论文标题
从欧几里得相关函数重建涂抹光谱函数
Reconstruction of smeared spectral function from Euclidean correlation functions
论文作者
论文摘要
我们提出了一种从欧几里得晶格上测得的两点相关函数重建涂抹光谱函数的方法。任意涂抹函数可以视为平滑以允许使用Chebyshev多项式进行近似值。我们使用charmonium相关器的数值晶格数据测试该方法。该方法提供了一个框架,将晶格计算与实验数据进行比较,包括激发状态的贡献,而无需假设夸克二元。
We propose a method to reconstruct smeared spectral functions from two-point correlation functions measured on the Euclidean lattice. Arbitrary smearing function can be considered as far as it is smooth enough to allow an approximation using Chebyshev polynomials. We test the method with numerical lattice data of Charmonium correlators. The method provides a framework to compare lattice calculation with experimental data including excited state contributions without assuming quark-hadron duality.