论文标题

卷积神经网络作为近似贝叶斯计算的摘要统计数据

Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation

论文作者

Åkesson, Mattias, Singh, Prashant, Wrede, Fredrik, Hellander, Andreas

论文摘要

近似贝叶斯计算在系统生物学中广泛用于推断随机基因调节网络模型中的参数。它的性能非常关键地取决于将高维系统响应(例如时间序列)汇总到一些信息丰富的低维摘要统计数据的能力。这些统计数据的质量急剧影响推理任务的准确性。从候选统计数据库中选择最佳子集的现有方法并不能很好地扩展,而数十万到数百个候选统计数据。由于高质量的统计数据对良好的表现至关重要,因此在对复杂和高维问题进行推断时,这将成为一个严重的瓶颈。本文提出了一种卷积神经网络体系结构,以自动学习时间响应的信息摘要统计数据。我们表明,提出的网络可以有效地规避ABC推理预处理步骤的统计选择问题。在高维随机遗传振荡器中的两个基准问题和一个具有挑战性的推理问题学习参数上证明了所提出的方法。我们还通过比较不同的数据丰富度和数据采集策略来研究实验设计对网络性能的影响。

Approximate Bayesian Computation is widely used in systems biology for inferring parameters in stochastic gene regulatory network models. Its performance hinges critically on the ability to summarize high-dimensional system responses such as time series into a few informative, low-dimensional summary statistics. The quality of those statistics acutely impacts the accuracy of the inference task. Existing methods to select the best subset out of a pool of candidate statistics do not scale well with large pools of several tens to hundreds of candidate statistics. Since high quality statistics are imperative for good performance, this becomes a serious bottleneck when performing inference on complex and high-dimensional problems. This paper proposes a convolutional neural network architecture for automatically learning informative summary statistics of temporal responses. We show that the proposed network can effectively circumvent the statistics selection problem of the preprocessing step for ABC inference. The proposed approach is demonstrated on two benchmark problem and one challenging inference problem learning parameters in a high-dimensional stochastic genetic oscillator. We also study the impact of experimental design on network performance by comparing different data richness and data acquisition strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源