论文标题
不对称的cho-davis不平等
Asymmetric Choi--Davis inequalities
论文作者
论文摘要
令$φ$为UNITAL正线性图,让$ A $为正面可逆操作员。我们证明存在部分异构体$ u $和$ v $,因此\ [|φ(f(a))φ(a)φ(g(a))| \ leq uq u^*φ(f(a)ag(a)ag(a))u \ \] \ [\ left |φ\ left(f(a)\右)^{ - r}φ(a)^rφ\ left(g(a)\ right)^{ - r} \ r} \ right | \ leq v^*φ\ lest(f(a)^{ - r}^{ - r} a^rg(a)^rg(a)^rg(a)^rg(A)数字$ r $。此外,我们表明,如果$ f^2 $是操作员凹面,则$$ |φ(f(a))φ(a)| \leqφ(af(a))。此外,我们还为不对称的choi-davis不平等和不对称的kadison等对应。我们的结果扩大了由于布林 - 里卡德和弗鲁塔而引起的一些不平等。
Let $Φ$ be a unital positive linear map and let $A$ be a positive invertible operator. We prove that there exist partial isometries $U$ and $V$ such that \[ |Φ(f(A))Φ(A)Φ(g(A))|\leq U^*Φ(f(A)Ag(A))U \] and \[\left|Φ\left(f(A)\right)^{-r}Φ(A)^rΦ\left(g(A)\right)^{-r}\right|\leq V^*Φ\left(f(A)^{-r}A^rg(A)^{-r}\right)V\] hold under some mild operator convex conditions and some positive numbers $r$. Further, we show that if $f^2$ is operator concave, then $$ |Φ(f(A))Φ(A)|\leq Φ(Af(A)).$$ In addition, we give some counterparts to the asymmetric Choi--Davis inequality and asymmetric Kadison inequality. Our results extend some inequalities due to Bourin--Ricard and Furuta.