论文标题
分布式传感与正交多访问:对代码或不代码?
Distributed Sensing with Orthogonal Multiple Access: To code or not to Code?
论文作者
论文摘要
我们考虑具有有限数量的传感器节点的分布式传感系统的估计失真,其中节点观察到了共同的现象,并将其观察结果传输到正交通道上的融合中心。特别是,我们调查了编码方案(单独的源通道编码)是否优于未编码方案(联合源通道编码)。为此,我们明确地得出了具有不同节点和通道配置的编码异质传感系统的估计失真。基于此结果,我们表明,在具有相同节点和频道配置的均质传感系统中,如果节点的数量为$ k = 1 $或$ k = 2 $,则编码方案的表现优于未编码方案。对于具有$ K \ geq3 $节点和一般异质传感系统的同质传感系统,我们还为编码方案提供了明确的条件,以比未编码的方案更好地执行。此外,我们建议使用混合编码的异质传感系统的估计失真最小化,即某些节点使用编码方案,而其他节点则使用未编码的方案。为了确定最佳的混合编码政策,我们开发了三种贪婪的算法,在这种算法中,纯粹的贪婪算法最大程度地减少了贪婪的失真,贪婪算法可以通过使用预处理的效率降低计算复杂性,从而通过使用一组贪婪算法来改善计算复杂性,从而提高了性能。我们的数值和蒙特卡洛的结果表明,所提出的算法以平均估计失真的方式紧密遵守最佳策略。
We consider the estimation distortion of a distributed sensing system with finite number of sensor nodes, in which the nodes observe a common phenomenon and transmit their observations to a fusion center over orthogonal channels. In particular, we investigate whether the coded scheme (separate source-channel coding) outperforms the uncoded scheme (joint source-channel coding) or not. To this end, we explicitly derive the estimation distortion of a coded heterogeneous sensing system with diverse node and channel configurations. Based on this result, we show that in a homogeneous sensing system with identical node and channel configurations, the coded scheme outperforms the uncoded scheme if the number of nodes is $K=1$ or $K=2$. For homogenous sensing systems with $K\geq3$ nodes and general heterogeneous sensing systems, we also present explicit conditions for the coded scheme to perform better than the uncoded scheme. Furthermore, we propose to minimize the estimation distortion of heterogeneous sensing systems with hybrid coding, i.e., some nodes use the coded scheme and other nodes use the uncoded scheme. To determine the optimal hybrid coding policy, we develop three greedy algorithms, in which the pure greedy algorithm minimizes distortion greedily, the group greedy algorithm improves performance by using a group of potential sub-polices, and the sorted greedy algorithm reduces computational complexity by using a pre-solved iteration order. Our numerical and Monte Carlo results show that the proposed algorithms closely approach the optimal policy in terms average estimation distortion.