论文标题

高铁硼酸作用的共同体学

Cohomology of hyperfinite Borel actions

论文作者

Bezuglyi, Sergey, Sanadhya, Shrey

论文摘要

我们研究了标准Borel空间$(x,\ Mathcal {b})$的可数组的Cocycles $γ$的borel borel自动形态,以本地紧凑的第二可计数组$ g $中的值。我们证明,对于高铁组$γ$,同生的亚组在同伴组中密集。我们描述了$ 2 $ - 模块计的所有Borel Cocycles,并表明任何此类Cocycle均与Cocycle共同,并具有可计数的密集亚组$ h $ ok $ g $。我们还提供了Gottschalk-Hedlund定理的Borel版本。

We study cocycles of countable groups $Γ$ of Borel automorphisms of a standard Borel space $(X, \mathcal{B})$ taking values in a locally compact second countable group $G$. We prove that for a hyperfinite group $Γ$ the subgroup of coboundaries is dense in the group of cocycles. We describe all Borel cocycles of the $2$-odometer and show that any such cocycle is cohomologous to a cocycle with values in a countable dense subgroup $H$ of $G$. We also provide a Borel version of Gottschalk-Hedlund theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源