论文标题

多-D Poisson-Nernst-Planck系统的有效,积极和能量稳定方案

Efficient, positive, and energy stable schemes for multi-D Poisson-Nernst-Planck systems

论文作者

Liu, Hailiang, Maimaitiyiming, Wumaier

论文摘要

在本文中,我们设计,分析和数值验证了正面和能量消散方案,以求解Poisson-Nernst-Planck(PNP)方程的时间依赖性多维系统,该系统在生物膜通道和半导体式的生物膜通道的建模中有很大使用。基于系统重新制定的半平整时间离散化提供了一个良好的椭圆系统,该系统被证明可以为任意时间步骤保留解决方案的阳性。表明,第一阶(及时)完全消失的方案无条件地保留溶液的阳性和质量保护,并且只有轻度$ O(1)$(1)$时间步长限制。该方案还证明可以保留稳态。对于具有较大时间步长的完全二阶(在时间和空间中)方案,解决方案阳性由局部规模限制器恢复,该局部比例限制器可维持空间精度。这些方案易于实施。几个三维数字示例验证了我们的理论发现,并证明了所提出的方案的准确性,效率和鲁棒性以及对稳态状态的快速方法。

In this paper, we design, analyze, and numerically validate positive and energy-dissipating schemes for solving the time-dependent multi-dimensional system of Poisson-Nernst-Planck (PNP) equations, which has found much use in the modeling of biological membrane channels and semiconductor devices. The semi-implicit time discretization based on a reformulation of the system gives a well-posed elliptic system, which is shown to preserve solution positivity for arbitrary time steps. The first order (in time) fully-discrete scheme is shown to preserve solution positivity and mass conservation unconditionally, and energy dissipation with only a mild $O(1)$ time step restriction. The scheme is also shown to preserve the steady-state. For the fully second order (in both time and space) scheme with large time steps, solution positivity is restored by a local scaling limiter, which is shown to maintain the spatial accuracy. These schemes are easy to implement. Several three-dimensional numerical examples verify our theoretical findings and demonstrate the accuracy, efficiency, and robustness of the proposed schemes, as well as the fast approach to steady states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源