论文标题

通过预测人类的目光来发现显着的解剖学地标

Discovering Salient Anatomical Landmarks by Predicting Human Gaze

论文作者

Droste, Richard, Chatelain, Pierre, Drukker, Lior, Sharma, Harshita, Papageorghiou, Aris T., Noble, J. Alison

论文摘要

解剖标志是许多医学成像任务的关键先决条件。通常,给定任务的地标集由专家预定。然后,手动或通过手动注释训练的机器学习方法对给定图像的具有里程碑意义的位置进行注释。相比之下,本文我们提出了一种自动发现和本地化解剖标记中的方法中的方法。具体来说,我们考虑着吸引人类视觉关注的地标,我们将其视为视觉上的地标。我们说明了胎儿神经发音图像的方法。首先,通过现场超声检查员注视跟踪记录全长临床胎儿超声扫描。接下来,对卷积神经网络(CNN)进行了训练,以预测扫描视频框架上超声波检查员的凝视点分布(显着图)。然后,CNN用于预测看不见的胎儿神经发音图像的显着性图,并将地标作为这些显着性图的局部最大值提取。最后,通过聚集Landmark CNN功能,将地标在图像之间匹配。我们表明,发现的地标可在仿射图像登记中使用,平均地标对准误差在4.1%至10.9%的胎头长轴长度之间。

Anatomical landmarks are a crucial prerequisite for many medical imaging tasks. Usually, the set of landmarks for a given task is predefined by experts. The landmark locations for a given image are then annotated manually or via machine learning methods trained on manual annotations. In this paper, in contrast, we present a method to automatically discover and localize anatomical landmarks in medical images. Specifically, we consider landmarks that attract the visual attention of humans, which we term visually salient landmarks. We illustrate the method for fetal neurosonographic images. First, full-length clinical fetal ultrasound scans are recorded with live sonographer gaze-tracking. Next, a convolutional neural network (CNN) is trained to predict the gaze point distribution (saliency map) of the sonographers on scan video frames. The CNN is then used to predict saliency maps of unseen fetal neurosonographic images, and the landmarks are extracted as the local maxima of these saliency maps. Finally, the landmarks are matched across images by clustering the landmark CNN features. We show that the discovered landmarks can be used within affine image registration, with average landmark alignment errors between 4.1% and 10.9% of the fetal head long axis length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源