论文标题

用线性过滤器合奏修剪CNN的CNN

Pruning CNN's with linear filter ensembles

论文作者

Sándor, Csanád, Pável, Szabolcs, Csató, Lehel

论文摘要

尽管卷积神经网络(CNN)有很有希望的结果,但它们在资源有限的设备上的应用仍然是一个巨大的挑战。这主要是由于CNN的巨大内存和计算要求。为了应对网络大小所施加的限制,我们使用修剪来减少网络大小,并暗中使用浮点操作的数量(FLOPS)。与``常规'网络修剪''中使用的滤波器标准方法相反 - 基于较小规范意味着``较小的重要性''的假设,我们开发了一种新颖的滤波器重要性规范,该规范是基于由于网络体系结构的存在或删除组件而导致的经验损失的变化。 由于过滤器配置的个人可能性太多,因此我们从这些架构组件中反复采样,并在各个组件处于活动状态或禁用的组件状态下测量系统性能。结果是过滤器合奏的集合 - 过滤器掩码和关联的性能值。我们根据线性和添加剂模型对过滤器进行排名,并删除最不重要的模型,以使网络准确性下降是最小的。我们在完全连接的网络以及在CIFAR-10数据集中训练的Resnet体系结构上评估了我们的方法。使用我们的修剪方法,我们设法删除了$ 60 \%的参数和64美元的flops的flops,精度降低了$ 0.6 \%$ $。

Despite the promising results of convolutional neural networks (CNNs), their application on devices with limited resources is still a big challenge; this is mainly due to the huge memory and computation requirements of the CNN. To counter the limitation imposed by the network size, we use pruning to reduce the network size and -- implicitly -- the number of floating point operations (FLOPs). Contrary to the filter norm method -- used in ``conventional`` network pruning -- based on the assumption that a smaller norm implies ``less importance'' to its associated component, we develop a novel filter importance norm that is based on the change in the empirical loss caused by the presence or removal of a component from the network architecture. Since there are too many individual possibilities for filter configuration, we repeatedly sample from these architectural components and measure the system performance in the respective state of components being active or disabled. The result is a collection of filter ensembles -- filter masks -- and associated performance values. We rank the filters based on a linear and additive model and remove the least important ones such that the drop in network accuracy is minimal. We evaluate our method on a fully connected network, as well as on the ResNet architecture trained on the CIFAR-10 dataset. Using our pruning method, we managed to remove $60\%$ of the parameters and $64\%$ of the FLOPs from the ResNet with an accuracy drop of less than $0.6\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源