论文标题
关于Schur问题和Kostka编号
On Schur problem and Kostka numbers
论文作者
论文摘要
我们重新考虑了两个相关问题:已知特征值(Schur)的偏对角元素的分布以及在给定的SU(N)的不可还原表示中的重量多数的测定(Kostka)。众所周知,前者产生了后者的半古典图片。我们提供了补充文献中给出的n的低值的明确表达,请回顾两个问题之间的一些确切的(非渐近)关系,对限制程序的评论,从而从Littlewood-Richardson系数获得了Kostka数字,并最终将这些考虑扩展到B2 Algebra的情况下,并提供了一些新颖的新颖猜想。
We reconsider the two related problems: distribution of the diagonal elements of a Hermitian n x n matrix of known eigenvalues (Schur) and determination of multiplicities of weights in a given irreducible representation of SU(n) (Kostka). It is well known that the former yields a semi-classical picture of the latter. We present explicit expressions for low values of n that complement those given in the literature, recall some exact (non asymptotic) relation between the two problems, comment on the limiting procedure whereby Kostka numbers are obtained from Littlewood-Richardson coefficients, and finally extend these considerations to the case of the B2 algebra, with a few novel conjectures.