论文标题

与范围兼容的控制障碍功能

Extent-Compatible Control Barrier Functions

论文作者

Srinivasan, Mohit, Abate, Matthew, Nilsson, Gustav, Coogan, Samuel

论文摘要

在状态空间的安全区域上,通常会通过设置不变性约束来执行动力系统的安全要求。控制障碍功能是确保设置不变性的类似Lyapunov的功能,是执行此类约束并确保安全性的有效工具,当系统被表示为状态空间中的点。在本文中,我们介绍了与程度兼容的控制屏障功能,以此作为对系统安全性的工具,包括其物理世界中的体积(范围)。为了实施与程度兼容的控制屏障功能框架,提出了基于平方的优化程序。由于规程计划的总和可能在计算上是过时的,因此我们还引入了一种基于抽样的方法,以保留基于传统屏障函数的二次程序控制器的计算优势。我们证明,拟议的基于抽样的控制器保留了安全保证。还提供了模拟和机器人实施结果。

Safety requirements in dynamical systems are commonly enforced with set invariance constraints over a safe region of the state space. Control barrier functions, which are Lyapunov-like functions for guaranteeing set invariance, are an effective tool to enforce such constraints and guarantee safety when the system is represented as a point in the state space. In this paper, we introduce extent-compatible control barrier functions as a tool to enforce safety for the system including its volume (extent) in the physical world. In order to implement the extent-compatible control barrier functions framework, a sum-of-squares based optimization program is proposed. Since sum-of-squares programs can be computationally prohibitive, we additionally introduce a sampling based method in order to retain the computational advantage of a traditional barrier function based quadratic program controller. We prove that the proposed sampling based controller retains the guarantee for safety. Simulation and robotic implementation results are also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源