论文标题

Huygens原理和全息原理的代数表达

The Algebraic Expressions of Huygens Principle and Holographic Principle of Light

论文作者

Fu, Malong, Zhao, Yang

论文摘要

Huygens原理(HP)是波光学的基石,其数学模型是波方程的边界值问题。该数学模型的解决方案应是部分衍生化的u sub n n nepppicontion,并满足延迟电位的形式。在参与的公式中,仅雷利 - 塞默菲尔德衍射公式(RSDF)满足了这两个限制。不幸的是,HP需要球形边界,而RSDF的边界是无限平面。除此之外,我们发现了HP和全息原理(HPL)的几何结构是互补的。在这里,我们根据图像方法得出了具有球形边界的HP和HPL的完整表达式。此外,HP,HPL和RSDF被合并为一个新原则,即如果真空区域的边界是球形表面或无限平面,则该真空区域中的所有光都是由边界上的光确定的。

Huygens principle (HP) is the cornerstone of wave optics, its mathematical model is a boundary value problem of wave equation. The solutions of this mathematical model should be partial derivative u sub n independent and satisfy the form of retarded potential. In the engaged formulas, only the Rayleigh-Sommerfeld diffraction formula (RSDF) satisfies these two restrictions. Unfortunately, the HP requires spherical boundary, while the boundary of RSDF is an infinite plane. Besides that, we find the the geometric constructions of HP and holographic principle of light (HPL) are complementary. Here we derive out the complete expressions of HP and HPL with spherical boundary, based on the method of images. Furthermore, the HP, HPL and RSDF are combined into one new principle that if the boundary of a vacuum region is a spherical surface or an infinite plane, all the light in this vacuum region is determined by the light on the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源