论文标题

最佳代码纠正可变长度的删除爆发

Optimal Codes Correcting a Burst of Deletions of Variable Length

论文作者

Lenz, Andreas, Polyanskii, Nikita

论文摘要

在本文中,我们提出了有效的编码和可解码的代码构建,该代码构建能够校正最多$ k $的长度删除。此代码的冗余是$ \ log n+k(k+1)/2 \ log \ log \ log n+c_k $,对于某些常数$ c_k $,仅取决于$ k $,因此缩放优越。代码可以分为两个主要组件。首先,我们施加了一个约束,该约束可以将删除的爆发定位到大约$ \ log n $的大小间隔。然后,借助爆发的大约位置,我们使用几个{移动的varshamov-tenengolts}代码来纠正删除的爆发,这只需要少量的冗余,因为该位置已经知道,最多已知的间隔很小。最后,我们展示了如何有效地编码和解码代码。

In this paper, we present an efficiently encodable and decodable code construction that is capable of correction a burst of deletions of length at most $k$. The redundancy of this code is $\log n + k(k+1)/2\log \log n+c_k$ for some constant $c_k$ that only depends on $k$ and thus is scaling-optimal. The code can be split into two main components. First, we impose a constraint that allows to locate the burst of deletions up to an interval of size roughly $\log n$. Then, with the knowledge of the approximate location of the burst, we use several {shifted Varshamov-Tenengolts} codes to correct the burst of deletions, which only requires a small amount of redundancy since the location is already known up to an interval of small size. Finally, we show how to efficiently encode and decode the code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源