论文标题

城市街网络分析在计算笔记本中

Urban Street Network Analysis in a Computational Notebook

论文作者

Boeing, Geoff

论文摘要

计算笔记本为研究人员,从业人员,学生和教育工作者提供了交互进行分析和传播可再现的工作流程的能力,这些工作流将代码,视觉效果和叙述编织在一起。本文探讨了在城市分析和计划中计算笔记本的潜力,并通过对OSMNX及其教程存储库的案例研究来证明其实用性。 OSMNX是用于使用OpenStreetMap数据以及世界上任何地方的街道网络建模,分析和可视化街道网络的Python软件包。它的官方演示和教程在Github上作为开源Jupyter笔记本分发。本文通过记录存储库来展示此资源,并通过改编自存储库改编的概要教程进行交互式演示OSMNX。它说明了如何为各种研究站点下载城市数据和模型街道网络,计算网络指标,可视化街道中心性,计算路线,并使用其他空间数据,例如构建足迹和兴趣点。计算笔记本有助于向新用户介绍方法,并帮助研究人员吸引对学习,适应和混合工作感兴趣的更广泛的受众。由于它们的效用和多功能性,因此在城市规划,分析和相关地理损失学科中的计算笔记本持续采用应持续到未来。

Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively conduct analytics and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download urban data and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks help introduce methods to new users and help researchers reach broader audiences interested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban planning, analytics, and related geocomputation disciplines should continue into the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源