论文标题
伪差算子的半经典估计和不稳定政权中的Muskat问题
Semiclassical estimates for pseudodifferential operators and the Muskat problem in the unstable regime
论文作者
论文摘要
我们获得了具有低规则符号的伪差算子的新的半经典估计值。这些符号在与[CCF16]中的凸集成构成的不稳定的Muskat问题有关的CAUCHY问题中自然而然地出现。特别是,我们的新估计揭示了混合区的开放速度与相间规则性之间的紧密关系。
We obtain new semiclassical estimates for pseudodifferential operators with low regular symbols. Such symbols appear naturally in a Cauchy Problem related to recent weak solutions to the unstable Muskat problem constructed via convex integration in [CCF16]. In particular, our new estimates reveal the tight relation between the speed of opening of the mixing zone and the regularity of the interphase.