论文标题

Laplacian的大约三维双面Dirichlet和Neumann边界价值问题

About Three Dimensional Double-Sided Dirichlet and Neumann Boundary Value Problems for the Laplacian

论文作者

Polishchuk, Olexandr

论文摘要

可以确定其元素可以表示为简单和双层电位的希尔伯特空间的正交性。在希尔伯特(Hilbert)空间中建立了相当于双面迪里奇(Dirichlet),neumann和dirichlet-neumann边界价值问题的简单和双层电势之和的积分方程良好的条件,在希尔伯特空间中,其元素以及其正常衍生物的元素都具有跳跃边界表面的跳跃。研究了三维拉普拉斯方程的不同类型的双面边界条件的边界运算符的性质。

The orthogonality of Hilbert spaces whose elements can be represented as simple and double layer potentials is determined. Conditions of well-posed solvability of integral equations for the sum of simple and double layer potentials equivalent to double-sided Dirichlet, Neumann, and Dirichlet-Neumann boundary value problems for the Laplacian are established in the Hilbert space, elements of which as well as their normal derivatives have the jump through boundary surface. The properties of boundary operators that relate the double-sided boundary conditions of different types for the three-dimensional Laplace equation are investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源