论文标题
在经典函数空间中具有椭圆形PDE约束的形状微积分
On Shape Calculus with Elliptic PDE Constraints in Classical Function Spaces
论文作者
论文摘要
在本文中,我们开发了一个功能分析框架,以使用经典函数空间(Hölder空间)中的椭圆形偏微分方程(PDE)约束使用椭圆形偏微分方程(PDE)。这种方法是由形状优化问题激励的,形状优化问题受到线性弹性约束,并涉及一类特殊的形状功能,这些功能计算机械加载的设备W.R.T.的故障率。组件形状。这些目标是针对状态方程的$ h^1 $ solutions的定义不明的,并且形状衍生物未针对$ h^1 $ - 材料衍生物定义。因此,所产生的最佳可靠性问题无法通过已经存在的形状演算方法来解决。我们在Banach和Hilbert空间上开发了一个一般概念,该概念基于参数,这取决于各个方程,经典的PDE解决方案,Schauder估计和紧凑的嵌入式,并允许将下Banach空间拓扑中的可区分性传输到较高的嵌入。鉴于该框架是根据速度方法转换的,我们将此框架应用于线性弹性方程及其变化公式。我们证明了Hölder空间中的材料和局部形状衍生物的存在,形状衍生物的存在并得出了伴随方程。我们还提供了$ l^2 $形状梯度W.R.T.的分类。它的规律性及其在下降流中维持领域规律性的潜力。
In this thesis we develop a functional analytic framework for shape optimization with elliptic partial differential equation (PDE) constraints in classical function spaces (Hölder spaces). This approach is motivated by shape optimization problems, which are subjected to linear elasticity constraints and involve a special class of shape functionals which calculate the failure rate of a mechanically loaded device w.r.t. the component shape. These objectives are ill-defined for $H^1$-solutions of the state equation and the shape derivatives are not defined for $H^1$-material derivatives. Thus, the resulting optimal reliability problems can not be solved by the already existing methods of shape calculus. We develop a general concept on Banach and Hilbert spaces which is based on parameter depending variational equations, classical PDE Solutions, Schauder estimates and compact embeddings and which allows to transfer differentiability in lower Banach space topologies to higher ones. We apply this framework to the linear elasticity equation and its variational formulation, given that the domain is transformed according to the speed method. We prove the existence of material and local shape derivatives in Hölder spaces, the existence of shape derivatives and derive adjoint equations. We also give a classification of the $L^2$-shape gradient w.r.t. its regularity and its potential to sustain the domain regularity along a descent flow.