论文标题

用对称和混合双线性模型的癫痫发作分类

Epileptic Seizure Classification with Symmetric and Hybrid Bilinear Models

论文作者

Liu, Tennison, Truong, Nhan Duy, Nikpour, Armin, Zhou, Luping, Kavehei, Omid

论文摘要

癫痫病影响了近1%的全球人口,其中三分之二可以通过抗癫痫药治疗,而手术的百分比要低得多。癫痫和监测的诊断程序是高度专业化和劳动密集型的。通过重叠的医学症状,不同水平的经验和临床专业的观察者变异性,诊断的准确性也变得复杂。本文提出了一个新型混合双线性深度学习网络,并在癫痫分类诊断的临床程序中应用,其中表面脑电图(SEEG)(SEEG)和视听监测是标准实践。基于两种特征提取器的混合双线性模型,即卷积神经网络(CNN)和经常性神经网络(RNN),使用一秒钟的Seeg的短时傅立叶变换(STFT)训练。在提出的混合模型中,CNN提取时空模式,而RNN则在给定相同的输入数据的情况下,在相对较长的间隔中关注时间动力学的特征。基于这些时空特征之间的相互作用,双线性合并进一步探讨了二阶特征,并用于癫痫分类。我们提出的方法在坦普尔大学医院癫痫发作中获得97.4%的F1评分,癫痫数据集的F1分数为97.2%,与现有基准的基于基于SEEG的癫痫发作类型分类的基准相比。该研究的开源实施可从https://github.com/neurosyd/epileptic-seizure-classification获得

Epilepsy affects nearly 1% of the global population, of which two thirds can be treated by anti-epileptic drugs and a much lower percentage by surgery. Diagnostic procedures for epilepsy and monitoring are highly specialized and labour-intensive. The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-observer variability among clinical professions. This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis, where the use of surface electroencephalogram (sEEG) and audiovisual monitoring is standard practice. Hybrid bilinear models based on two types of feature extractors, namely Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are trained using Short-Time Fourier Transform (STFT) of one-second sEEG. In the proposed hybrid models, CNNs extract spatio-temporal patterns, while RNNs focus on the characteristics of temporal dynamics in relatively longer intervals given the same input data. Second-order features, based on interactions between these spatio-temporal features are further explored by bilinear pooling and used for epilepsy classification. Our proposed methods obtain an F1-score of 97.4% on the Temple University Hospital Seizure Corpus and 97.2% on the EPILEPSIAE dataset, comparing favourably to existing benchmarks for sEEG-based seizure type classification. The open-source implementation of this study is available at https://github.com/NeuroSyd/Epileptic-Seizure-Classification

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源