论文标题
超快全旋转开关的时间和光谱指纹
Temporal and spectral fingerprints of ultrafast all-coherent spin switching
论文作者
论文摘要
未来的信息技术最终要求快速,低损失的量子控制。强烈的光场促进了重要的里程碑,例如诱导物质的新状态,弹道加速电子,或者连贯地翻转山谷伪植物。这些动力学留下独特的特征,例如特征带镜头或高阶谐波辐射。切换技术上最重要的量子属性的最快和最小耗散方法 - 在两个状态之间被潜在障碍物隔开的状态之间的自旋是触发全联盟的进动。使用皮秒电场和磁场的开创性实验和理论提出了这种可能性,但是观察实际动力学仍然无法触及。在这里,我们表明Terahertz(1 Thz = 10 $^{12} $ Hz)电磁脉冲允许在潜在的屏障上连贯旋转,我们揭示了相应的时间和光谱指纹。通过将抗铁磁Tmfeo $ _ {3} $与本地增强的定制天线的THZ电场相结合,可以实现此目标。在1 ps的持续时间内,强烈的THZ脉冲突然改变了磁各向异性,并触发了大振幅弹道自旋运动。与数值模拟一致的特征相位翻转,镁共振的不对称分裂以及长期寿命的偏移是相干旋转切换到相邻电位最小值的标志,与数值模拟一致。可以通过外部磁性偏置选择可切换的自旋状态。低耗散和天线的次波长空间定义可以促进以THZ速率运行的可扩展自旋设备。
Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the valley pseudospin. These dynamics leave unique signatures, such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute - the spin - between two states separated by a potential barrier is to trigger an all-coherent precession. Pioneering experiments and theory with picosecond electric and magnetic fields have suggested this possibility, yet observing the actual dynamics has remained out of reach. Here, we show that terahertz (1 THz = 10$^{12}$ Hz) electromagnetic pulses allow coherent navigation of spins over a potential barrier and we reveal the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO$_{3}$ with the locally enhanced THz electric field of custom-tailored antennas. Within their duration of 1 ps, the intense THz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the magnon resonance, and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with a numerical simulation. The switchable spin states can be selected by an external magnetic bias. The low dissipation and the antenna's sub-wavelength spatial definition could facilitate scalable spin devices operating at THz rates.