论文标题

一个对抗性学习框架,可保护用户在基于面部的情感识别中的匿名性

An adversarial learning framework for preserving users' anonymity in face-based emotion recognition

论文作者

Narula, Vansh, Zhangyang, Wang, Chaspari, Theodora

论文摘要

图像和视频捕获技术已经渗透到我们日常生活中。这样的技术可以在现实生活中不断监视个人的表情,从而为我们提供了对他们的情绪状态和过渡的新见解,从而为新颖的幸福感和医疗保健应用铺平了道路。然而,由于严重的隐私问题,这种技术的使用受到了强烈的怀疑,因为当前基于面部的情感识别系统依靠深度学习技术倾向于保留与用户身份相关的大量信息,除了情感特定的信息外。本文提出了一个对抗性学习框架,该框架依赖于通过迭代程序训练的卷积神经网络(CNN)体系结构,以最大程度地降低特定身份的信息并最大程度地依赖情绪依赖性信息。通过情感分类和面部识别指标评估了所提出的方法,并与两个CNN进行了比较,一种仅接受情感识别而受过训练的训练,另一种仅用于面部识别的训练。使用耶鲁大学面部数据集和日本女性面部表达数据库进行实验。结果表明,所提出的方法可以学习一种卷积转换,以保持情绪识别的准确性和降低面部身份识别,从而为隐私感知的情感识别技术提供了基础。

Image and video-capturing technologies have permeated our every-day life. Such technologies can continuously monitor individuals' expressions in real-life settings, affording us new insights into their emotional states and transitions, thus paving the way to novel well-being and healthcare applications. Yet, due to the strong privacy concerns, the use of such technologies is met with strong skepticism, since current face-based emotion recognition systems relying on deep learning techniques tend to preserve substantial information related to the identity of the user, apart from the emotion-specific information. This paper proposes an adversarial learning framework which relies on a convolutional neural network (CNN) architecture trained through an iterative procedure for minimizing identity-specific information and maximizing emotion-dependent information. The proposed approach is evaluated through emotion classification and face identification metrics, and is compared against two CNNs, one trained solely for emotion recognition and the other trained solely for face identification. Experiments are performed using the Yale Face Dataset and Japanese Female Facial Expression Database. Results indicate that the proposed approach can learn a convolutional transformation for preserving emotion recognition accuracy and degrading face identity recognition, providing a foundation toward privacy-aware emotion recognition technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源