论文标题
结缔组织理论和亚当斯操作
Connective K-theory and Adams operations
论文作者
论文摘要
我们研究了代数品种的连贯模块的Grothendieck组与其代数周期的盘子组模块合理等价之间的关系。这些本质上是扭转现象,我们试图通过考虑Adams操作对Brown-Gersten-Quillen频谱序列和相关对象(例如结缔组织K_0理论)的作用来控制这些现象。我们尽可能提供基本的论点。作为应用程序,我们计算以下对象的连接k_0理论:(1)质量学位的中央分区代数中减少的规范元素的种类; (2)分裂特殊正交群的分类空间。
We investigate the relations between the Grothendieck group of coherent modules of an algebraic variety and its Chow group of algebraic cycles modulo rational equivalence. Those are in essence torsion phenomena, which we attempt to control by considering the action of the Adams operations on the Brown-Gersten-Quillen spectral sequence and related objects, such as connective K_0-theory. We provide elementary arguments whenever possible. As applications, we compute the connective K_0-theory of the following objects: (1) the variety of reduced norm one elements in a central division algebra of prime degree; (2) the classifying space of the split special orthogonal group of odd degree.