论文标题

均质空间以及几何学和数字理论应用的无义轨道

Nondense orbits on homogeneous spaces and applications to geometry and number theory

论文作者

An, Jinpeng, Guan, Lifan, Kleinbock, Dmitry

论文摘要

令$ g $为谎言组,$γ\子集g $一个离散子组,$ x = g/γ$,$ f $ a offine Map从$ x $到本身。我们在$ x $的子曼尼弗德$ z $上提供条件,保证一组点$ x \ in x $,带有$ f $ -trajectores避免$ z $的$ x $是超平面绝对的获胜(该属性意味着完整的Hausdorff尺寸,并且在可计数的交叉点下是稳定的)。对于$ x $的单参数措施,证明了类似的结果。这具有在局部对称空间上构建非凡的测量学的应用,以及在整数点处某些函数值集的非密度。

Let $G$ be a Lie group, $Γ\subset G$ a discrete subgroup, $X=G/Γ$, and $f$ an affine map from $X$ to itself. We give conditions on a submanifold $Z$ of $X$ guaranteeing that the set of points $x\in X$ with $f$-trajectories avoiding $Z$ is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on $X$. This has applications to constructing exceptional geodesics on locally symmetric spaces, and to non-density of the set of values of certain functions at integer points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源